
Week 7 - Wednesday

 What did we talk about last time?
 scanf()
 Dynamic memory allocation with malloc()

Beware of bugs in the above code; I have only proved it
correct, not tried it.

Donald E. Knuth

 Memory can be allocated dynamically using a function called
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes
you want

 It returns a pointer to that memory, which you cast to the
appropriate type

int* data = (int*)malloc(sizeof(int));

 C is not garbage collected like Java
 If you allocate something on the stack, it disappears when the

function returns
 If you allocate something on the heap, you have to deallocate

it with free()
 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char* things = (char*)malloc (100);
free(things);
things = NULL;

 Who is supposed to call free()?
 You should feel fear in your gut every time you type
malloc()
 That fear should only dissipate when you write a matching free()

 You need to be aware of functions like strdup() that call
malloc() internally
 Their return values will need to be freed eventually

 Read documentation closely
 And create good documentation for any functions you write that

allocate memory

 If you try to free something that has already been freed, your
program will probably crash

 If you use data that's already been freed, your program might
crash

 If you try to free a NULL pointer, it's fine

 Life is hard.

 Prompt the user for an integer giving the size of a list of
numbers

 Dynamically allocate an array of the appropriate size
 Read each of the numbers into the array
 Sort the array
 Print it out
 Free the memory

 There are situations (like on the next slide) where you want to grow the
amount of memory that you've allocated

 When that happens, you can call realloc()
 It takes the old pointer and a size in bytes
 It returns a pointer to new memory with all the old values copied over and the

old memory freed
 You almost always store the return value in the old pointer

 You could do this with a temporary pointer and a loop, but realloc() is
easier and faster

int *data = malloc(sizeof(int) * 100);
// Do some work
// It turns out that we need twice as much space
data = realloc(data, sizeof(int) * 200);

 You probably did an array-backed list in Java in COMP 2100
 Strategy:
 Allocate an initial array of, say, 10 elements in size
 Keep track of the capacity (starts at 10)
 Keep track of the number of elements actually used (starts at 0)
 When the array is full, we'll use realloc() to double the capacity

of our memory

 Everything gets freed at the end of your program
 So, you can just hope you don't run out of space
 However, if you're constantly allocating things and never

freeing them, you will run out of space
 Eventually, malloc()will return NULLwhen it can't allocate more

space
 More likely, your program will get slower and slower as the OS tries

to make more memory for you, probably copying memory to the
hard drive so that you can exceed your physical RAM

 Let's see this in action (but don't do this in a real program!)

 On some machines, you'll run out of space pretty quickly
 On these, the system will try hard to make enough space for you

char* buffer;

while(1)
{
buffer = (char*)malloc(1024);
buffer[0] = 'a';

}

 We know how to dynamically allocate a regular array
 How would you dynamically allocate a 2D array?
 In C, you can't do it in one step
 You have to allocate an array of pointers
 Then you make each one of them point at an appropriate place in

memory

 One way to dynamically allocate a 2D array is to
allocate each row individually

 When finished, you can access table like any 2D
array

int** table = (int**)malloc (sizeof(int*)*rows);

for (int i = 0; i < rows; ++i)
table[i] = (int*)malloc (sizeof(int)*columns);

table[3][7] = 14;

table

Chunks of data
that could be
anywhere in
memory

 To free a 2D array allocated with the Ragged Approach
 Free each row separately
 Finally, free the array of rows

for (int i = 0; i < rows; ++i)
free (table[i]);

free (table);

 Alternatively, you can allocate the memory for all rows at
once

 Then you make each row point to the right place

 When finished, you can still access table like any 2D array

int** table = (int**)malloc (sizeof(int*)*rows);
int* data = (int*)malloc (sizeof(int)*rows*columns);

for(int i = 0; i < rows; ++i)
table[i] = &data[i*columns];

table[3][7] = 14;

table

Contiguously allocated memory

 To free a 2D array allocated with the Contiguous Approach
 Free the big block of memory
 Free the array of rows
 No loop needed

free (table[0]);
free (table);

RAGGED

 Pros
 Each row can be allocated and freed

independently
 Rows can be shuffled in order with only

pointer changes
 Rows can be different lengths

 Cons
 Fragmented memory
 Less locality of reference
 Requires a loop to free

CONTIGUOUS

 Pros
 Better locality of reference
 Can free the entire thing with two free()

calls
 Shuffling rows with pointers is possible, but

you also have to keep track of the beginning

 Cons
 Large allocations are more likely to fail (out

of memory)
 Can't free individual rows

 Random numbers
 Memory allocation from the system's perspective

 Read LPI chapter 7
 Finish Project 3
 Start working on Project 4
 It's tricky!

	COMP 2400
	Last time
	Questions?
	Project 3
	Project 4
	Project 4
	Quotes
	Dynamic Memory Allocation
	malloc()
	free()
	Who is responsible?
	Double freeing
	Using dynamic allocation
	realloc()
	What if we keep adding stuff to a list?
	Memory leaks
	Memory leak example
	Allocating 2D Arrays
	Allocating 2D arrays
	Ragged Approach
	Ragged Approach in memory
	Freeing the Ragged Approach
	Contiguous Approach
	Contiguous Approach in memory
	Freeing the Contiguous Approach
	Comparing the approaches
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

